Data Analytics in Electrical Energy Systems (5 cr)
Code: YE00BG81-3001
General information
Enrollment
01.12.2023 - 25.04.2024
Timing
11.03.2024 - 30.04.2024
Credits
5 op
Mode of delivery
Contact teaching
Teaching languages
- Finnish
Seats
0 - 75
Teachers
- Janne Karppanen
- Janne Koponen
- Mikko Pääkkönen
Student groups
-
EJS23SYAdvanced Electrical Energy Systems (Master's Degree)
- Data-analytiikka sähköenergiajärjestelmissä YE00BG81-3001 / 12.03.2024 17:00 - 19:00
- Data-analytiikka sähköenergiajärjestelmissä YE00BG81-3001 / 14.03.2024 17:00 - 19:00
- Data-analytiikka sähköenergiajärjestelmissä YE00BG81-3001 / 19.03.2024 19:00 - 21:00
- Data-analytiikka sähköenergiajärjestelmissä YE00BG81-3001 / 21.03.2024 17:00 - 19:00
- Data-analytiikka sähköenergiajärjestelmissä YE00BG81-3001 / 26.03.2024 17:00 - 19:00
- Data-analytiikka sähköenergiajärjestelmissä YE00BG81-3001 / 28.03.2024 17:00 - 19:00
- Data-analytiikka sähköenergiajärjestelmissä YE00BG81-3001 / 02.04.2024 17:00 - 19:00
- Data-analytiikka sähköenergiajärjestelmissä YE00BG81-3001 / 04.04.2024 17:00 - 19:00
- Data-analytiikka sähköenergiajärjestelmissä YE00BG81-3001 / 09.04.2024 17:00 - 19:00
- Data-analytiikka sähköenergiajärjestelmissä YE00BG81-3001 / 11.04.2024 17:00 - 19:00
- Data-analytiikka sähköenergiajärjestelmissä YE00BG81-3001 / 16.04.2024 17:00 - 19:00
- Data-analytiikka sähköenergiajärjestelmissä YE00BG81-3001 / 18.04.2024 17:00 - 19:00
- Data-analytiikka sähköenergiajärjestelmissä YE00BG81-3001 / 23.04.2024 17:00 - 19:00
Teaching methods
Online lectures and tutoring (ZOOM), total 26 h
Working in a Moodle environment
- Self-study material (videos and learning paths) 10 h
- Practical work
The course consists of two areas, metering systems for the electricity network and data analytics for measurements. The data analytics part includes getting to know and using the cloud service.
Alternative implementation methods
Self-motivated working in a Moodle environment
- Practical work
Student workload
Student workload 135 h, of which online lectures and tutoring 26 h, self-study material 10 h. The rest of the time is devoted to internalizing the topic and doing the practical work.
Practical training and working life cooperation
Potential guest lecturers from the industry.
Qualifications
Electrical engineering studies at bachelor UAS-level.
Materials
Learning matrerial is in the Moodle.
Some of the learning material is in English.
Further information
The assessment is carried out on an approved/failed scale. A more detailed set of criteria for the approved grade is described in the course Moodle.
The learning environment of the course in Moodle will open no later than week 10.
Assessment criteria, satisfactory (1)
1: The student masters the basic concepts of the course.
2: The student knows approximately half of the course content, and can
solve simple problems related to the course content.
Assessment methods: Online assignments, exercises and
presentations
Assessment criteria, good (3)
solve simple problems related to the course content.
3: The student can solve moderately challenging problems related to the course content
related problems and masters the course concepts.
4: The student knows the main features of the material studied in the course.
Assessment methods: Online assignments, exercises and
presentations
Assessment criteria, excellent (5)
5: The student knows the material taught in the course excellently
level.
Assessment methods: Online assignments, exercises and
presentations